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NOMENCLATURE 

constants ; 
dimensionless stream function ; 
acceleration due to gravity; 
local flux Grashof number 
(= g.Jq, L*/kv*), dimensionless ; 
thermal conductivity coefficient; 
characteristic length ; 
coefficient defined in [4] ; 
local Nusselt number [ = q,,,x/k(T, - T,)], 
dimensionless ; 
dimensionless reduced coordinate ; 
Prandtl number (= v/a), dimensionless; 
heat flux; 
amount of energy convected by the fluid; 
normalizing arbitrary constant; 
fluid temperature; 
velocity components; 
tangential and normal coordinates 
respectively. 

Superscripts ^ 
dimensional variables ; 
averaged along the wall. 

Operators 
8, derivated with respect to the subscript(s). 

INTRODUCTION 

LAM~NAR boundary-layer natural-convection on a vertical 
wall with uniform wall heat flux has been thoroughly treated 
by several authors, mainly in [l-3]. Sparrow [3], proposed 
an approximated method to treat the nonuniform wall heat 
flux case. This method has been criticized by several authors 
[S-9] where some local nonsimilar methods are proposed. 

Natural-convection flow near an inclined flat surface was 
first visualized by Schlieren. Rich [lo] measured heat 
transfer at different inclination angles and found it within 10% 
of the values for the vertical plate if Gr is multiplied by cos(y). 
Vliet [ll] and Black and Norris [16] supported Rich’s 
suggestion. 

thermal diffusivity coefficient; 
thermal expansion coefficient ; 
angle between the plate and the vertical 
direction ; 
dimensionless parameter function ; 
constant; 
fluid viscosity; 
fluid density; 
skin friction ; 
dimensionless reduced coordinate; 
dimensionless functions; 
dimensionless stream function ; 
reduced fluid temperature. 

Kierkus [17] used a perturbation method to solve the 
boundary layer equations for isothermal plates with in- 
clinations between -45” and +45”. Lee and Lock [18] 
solved this problem numerically for air and for inclination 
angles from 90” to -30”. 

The instability of such flows was studied by Lloyd, Sparrow 
and Eckert [ 131 and by several other authors [ 18-381, where 
some parameters are proposed, indicating the beginning of 
the transition region and its dependence on the inclination 
angle, the local heat flux, the Prandtl number and etc. 

The mathematical model describing natural convection 
flows around vertical cylinder is analogous to that cor- 
responding to the flat plate, thus the solution is the same for 
both geometries. 

results from [4] ; 
results from [l] ; 
results from [S-7] ; 
series order ; 
numerical method’s results given in [S-7] ; 
results from [2] 
at wall surface; 
in the x-direction ; 
author’s results or functions; 
at bulk conditions; 
dummy integration variable. 

It is the aim of this paper to propose a new nonsimilar 
solution method to the nonuniform wall heat flux boundary- 
layer on inclined plates and vertical cylinder, easy to handle 
and applicable in all the range of laminar flow, whose limits 
can be determined by experimental or appropriate theoretical 
study. 

The case of binomial [q,(l + %x,‘] and exponential (q,,e”“) 
wall heat flux distributions is solved for Pr = 0.7. The solution 
is given in the form of diagrams giving the distribution of a 
reduced skin friction and a reduced fluid temperature, viz. 
(lx). 

BOUNDARY-LAYER EQUATIONS AND 
TRANSFORMATIONS 

In the case of laminar free convection along an inclined flat 
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surface or a vertical cylinder with constant properties and 
prescribed steady wall heat flux, introducing the following 
dimensionless variables 

2 
x = -, 

L 
y=i 

L 

the conservation equations are given by 

a+ + ayv = 0 

ua,u + va,u = a,,u + T 

ua,T + vd,T = $ ayyT 

with the following boundary conditions 

at 

at 

y=O, w=O= v, a,T= GrE 

4’ -+ z, u + 0, T + 0. 

Led us introduce the following transformations 

u = a,4, v = - a,4 

cp = (1+%x) 
rp 

rr = (Grf,,)“‘, w = 
s 

* dq, 
0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(LO) 

(11) 

(12) 

(13) 

(14) 

(15) 

The resulting reduced partial differential equations’ system 
is 

a,,,,,,F = 0.6(a,F)2 + (0.5 tp- 0.8) Fa,,F - e 

+ cp + t(c - 21~21 (a,Fa,,F - a,Fa,,F) 

a,,e/Pr = (0.2+ tp) ea,F+ (0.5 tp -0.8)Fa$ 

+ (p + t(l: - 2)p2)(a,Fa,e - a,Fa,e) 

at 

rt = 0, F = d,F = a,e + 1 = 0 

(16) 

(17) 

(18) 

at 

4 -+ m;, a,F- 0, e + 0. (19) 

SOLUTION METHODS 

Systems (16)-(19) can be solved by different methods, such 
as the finite element method, finite difference method, etc. Due 
to the time and cost ofcomputing of the first two methods, we 
chose the following series expansion method 

let 

(20) 

F = i F,<,,P” 
n=cl 

(21) 

(22) 

the choice of the arbitrary constant t given by equation (13) is 
such that p < 0.5 to avoid the divergence of these series. 

Substituting in equations (16-19) and separating the equal 
powers of p, we obtain a set of recurrent coupled pairs of 
ordinary differential equations. The first pair (the zeroth- 
order) is nonlinear and corresponds to the uniform wall heat 
flux distribution; while the higher orders are linear and 
corresponds to the corrections due to the prescribed 
distribution. 

REXJLTS AND COMPARISON 

(1) Uniform,fiux distribution (p = 0, c = 0) 
Analysis shows that 

7w = cr, d F Xo'4 0" 0 (23) 

Nu = $ CNu x0,’ 
0 

(25) 

(26) 

Mahajan and Gebhart [l] and Sparrow and Gregg [2] 
examined the same case. To simplify the comparison, we can 
write their results as 

TV, Go, 0 = C,(52’5f&, P = C,V,,PO ‘$ (27) 

C 
NU Ge. 0 = (5~,s ;o,G, CN ~0.8 = 2 $0.8 

e 
(28) 

Ge 

C 
p = Ny iO.8 

e 
(29) 

SP 

where the subscripts Ge and Sp and the variables with 
parentheses refer to [I] and [2], respectively. T,, Ge, o and 

Table 1. Comparison between authors’ results and results given by [l] and [2] for the uniform flux distribution 

Pi- e *z e Ge e SP 470 V G< 

0.1 3.7949 3.9910 3.1256 
0.733 2.0414 2.0417 1.5392 1.5399 
1.0 1.8726 1.8250 1.3738 
6.7 1.1615 I.1613 0.678 1 0.6783 
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Table 2. Comparison with experimental results [4] 
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Fluid Pr N 0 CY 4 

Air, 52°C 0.703 39.47 2.0611 2.0657 
Water, 20°C 7.060 3.62 1.139 1.147 

N”G,. 0 denote the zeroth-order Gebhart variables. 
Table 1 compares our results [f?,, (+VFo)J with VcI, f?or and 

e SP 
To enable comparison with the experimental results pub- 

lished in [4], a dimensionless reduced-temperature function 
corresponding to these results was found to be given by 

Table 2 compares 0, found by our method and Bc. 
calculated by equation (29). 

(2) Non-~nz~rrn~ux distribution 
Kao [S-7] gives a local nonsimilar solution method for 

these cases. Mainly he solves cases of linear increasing, linear 
decreasing and exponential increasing flux distributions. He 
also compares his results with results obtained from the local 
similarity model used in [S] and [9] and those obtained with 
the most accurate difference-differential method. The latest 
results will be considered when comnarinn our results with . - 

FIG. 1. Diagram for p, f?,, and fret vs i&x for an exponen- 
tially varying wall heat flux. -.-m-.- for Lx = 2; ---- 

asymptotic line, valid for large values of i,x. 

Applying the method described in this paper to the 
problem of exponential flux distribution 

we get 

q, = eAx (31) 

Eg = 1, E”,O = 0. (321 

The resulting set of total differential equations was solved 
numerically using the fourth-order-Runge-Kutta method for 
Pr = 0.7 taking arbitrarily r = 2. 

Figure 1 shows a diagram from which one can find pIAX,, 
%,~~O,~X~ and % kX). The method is as follows knowing %x, 
locate It on the vertical axis and draw a horizontal line (to the 
right-hand side for positive Rx and to the left-hand side for 
negative Lx), from the intersection of this line with the p-curve 
draw a vertical line that will cut the L&F and the 9 curve at 
their respective corresponding values; an example is drawn 
for %x = 2. An asymptotic vertical line is also drawn, 
corresponding for large values of Lx. 

Note that 

Nu=:__-I- 
oo”~20 (0) 

7L, = (pgL)u"~5wo~4~,,F~o,. (34) 

Table 3 compares the dimensionless wall temperature 
distributions that we obtained (T,), with those of Kao (TKo) 
and the reference method (T,,) for q = e’. 

For the binomial ff ux distribution 

we have 

q* = q&l +2x)’ (35) 

c- 1.5 
E. = - , E,>o=O. 

c 

This case was also solved for Pr = 0.7, t = 2 and c = 1. 
Figure 2 gives the corresponding diagram between Bto, ir,, 

dF ,,,, to, Ixj, P,~~, and (%x). An example is drawn for Rx = 2 and 
the asymptotic vertical line at p = 0.2 correspond to the 
power-law distribution. 

Table 4 compares T,, T,, and T,, for q = 1 + x. 
Figure 3 shows the variation of Nu+, and T viz. QcX, for the 

linear and the exponential flux distribution, where 

Table 3. Comparison for q = eX 

0 0 0 
0.2 1.6922 1.6911 
0.4 2.1994 2.1980 
0.6 2.7065 2.1047 
0.8 3.2610 3.2588 
1.0 3.8870 3.8843 
I.4 5.4349 5.4311 
2.0 8.8369 8.8176 
2.4 12.1690 12.1420 

1.6911 
2.2022 
2.7119 
3.2720 
3.9030 
5.4502 
8.8498 
12.1870 
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pi=07 

q_=q(jl+Xxl 

FIG. 2. Diagram for p, bi,,, and f;b, vs /Ix for a linearly varying 
wall heat flux - I- for Rx = 2 ; - --- asymptotic line, valid 

for large ;..x and for 4, = ax”. 

These curves and appropriate analysis show that in the case 
of a linear wall energy flux distribution, a lower average (and 
maximum) wall temperature is obtained and a larger wall 
area is needed to convect the same amount of energy than in 
the case of an exponential distribution. 

Table 4. Comparison for y = (1 -t x) 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.7 
2.1 
2.5 
3.1 

0 
1.6759 
2.1240 
2.5150 
2.8829 
3.2412 
4.4559 
5.1377 
5.8166 
6.8324 

0 
1.6759 
2.1226 
2.5101 
2.8773 
3.2327 
4.4440 
5.1239 
5.7970 
6.8047 

0 
1.6717 
2.1294 
2.5215 
2.8904 
3.2518 
4.4648 
5.1480 
5.8205 
6.8324 

FIG. 3. Comparison of the average Nusselt number and the 
wall temperature variations in function of the amount of 
energy convected, for the exponential wall flux distribution 

~ and the linear distribution -. - ‘-. 

CONCLUSIONS 

It is clear that the calculation of a and UI are much easier 
than equivalent transformations used in other nonsimilar 
solution methods. 

In the case of the geometries treated in this paper, (or is 
constant with respect to x; thus the values of .s. do not depend 
on the inclination angle. Since the solution of system 
(16)-(19) depends only on E,, F, and 8, but does not depend 
on y, only 0 and o vary with it. The reason of this result is that 
both p and E are independent with respect to the transfor- 
mation constants. 

Another advantage is the easiness of calculating s”:ns, e.g.: 
(a) for the uniform flux distribution, p = 0, E = 0, i.e. only 

the zeroth-order is to be solved; 
(b) for all the other cases the uniform flux distribution 

solution can be used as the zeroth-order’s, which saves 
a lot of computing time. 

The proposed method is limited by the apparition of 
ins~bility in the flow, which is, as was pointed out in the 
Introduction, predicted only by experimental or adequate 
analytical study. 

The fact that we neglected the normal-direction 
Navier--Stokes equation may be criticized and may explain 
the errors in the generalization, especially in the large 
inclination angles. 

The comparison between our results and thosegiven by the 
literature shows that our solution method, which is shorter, 
gives a better precision. 

It would be interesting to treat other flux distributions and 
geometry configurations. A general method to determine the 
adequate transformations for every specific problem is given 
in [39] where the details of the results given in this paper are 
discussed. 
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